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Inheriting Constraint in Hybrid Cognitive Architectures

Applying the EASE Architecture to Performance and Learning in a
Simplified Air-Traffic Control Task

1.0 INTRODUCTION

This report describes the development and evaluation of models of behavior in the AMBR air-traffic

control (ATC) and category learning task. The emphasis of the report will be on modeling constraints

derived from our methodology. Our overall modeling philosophy is driven by cognitive architectures as

theories of human perception, cognition, and action. Architectures are critical to the development of

broad, comprehensive theories Allen Newell called unified theories of cognition, or UTCs (Newell, 1990).

H .. ........T
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Figure 1: The enroute air traffic control task environment. Our EPIC-Soar eyeball and mouse pointer are overlaid on
the environment.
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Cognitive architectures, as instantiations of UTCs, comprise a set of fixed (or slowly evolving) mechanisms

and representations on which models of a wide range of behavior can be built.

We adopt, as constraints, several of Newell's principles and recommendations on the development and

use of models and architectures. First is "listening to the architecture" or making a commitment to an

architecture's mechanisms. When modeling a new behavior or phenomena, one must use the existing

mechanisms rather than introduce new mechanisms solely to address the requirements of the model or to

fit data. However, only when behavior cannot be plausibly implemented using an architecture's existing

mechanisms should the set of mechanisms be amended, either by modifying existing mechanisms or add-

ing new mechanisms. In this work, when considering architectural change, we followed an integrative

approach, incorporating validated components from other architectures rather than modifying the archi-

tecture less conservatively. EASE, the architecture developed and used here, combines elements of ACT-

R, Soar, and EPIC into one integrated hybrid architecture.

For architectures to have theoretical power, results and validations from previous model implementations

must cumulate as constraints on future modeling efforts (Newell 1990). This principle of cumulation as

constraint led us to reuse existing models. In this work, the ATC performance model from AMBR Phase I

was reused. For the category learning component, one previously developed model was reused and another,

not originally developed in an architectural theory, adapted to EASE. The principle of cumulation also

applies to architectural mechanisms: EASE brings together theoretical strengths of several existing archi-

tectures, incorporating both the mechanisms and common parameter settings in an explicit attempt to

inherit the validation and consequent constraint of multiple architectures. Cumulation reduces flexibility in

creating models, but increases the predictive and theoretical power of architectural models.

Taking architectural constraint seriously during model creation and refinement leads to an emphasis of

explanation over fitting. Freely changing architectural mechanisms, model knowledge, and model and

architecture parameters may lead to better fits to the data, but not necessarily to an improved understand-

ing of the underlying phenomena. We deliberately chose to minimize such changes, fixing model knowl-

edge, parameter settings, and the architecture to the extent possible. The positive consequence of such

constraint is clearly evident by the use of the Symbolic Concept Acquisition (SCA) model. Although the

initial prediction of the aggregate human data was quite poor, we resisted abandoning the model or radi-

cally reformulating it or the architecture, choosing instead to perform a fine-grained analysis of the indi-

vidual human data. This analysis revealed that the model did match the learning trajectories of some

individual subjects and that some subjects were considering factors that the task instructions directed them

to ignore. Thus, the architectural constraint led to significantly broader understanding of the human

behavior in the task.
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In summary, the focus of this work was to understand architectural and task constraints and to develop

plausible models that took these constraints into account.

2.0 SYSTEM-LEVEL ANALYSIS OF THE TASK

Like most complex tasks humans perform, the combination of the ATC and category learning tasks rely on

multiple human systems-visual sensation and perception, memory, cognition, and action-and the

interaction of such systems (e.g. eye-hand coordination).

Our first model development step was to assess the influence of each of these systems on task perfor-

mance. This preliminary assessment is useful because it:

"* informs the selection of a modeling framework or architecture;

"* provides the modeler with a sense of the model's eventual complexity;

"* helps identify existing empirical task-relevant behavioral data that can be modeled;

"* points to existing models that might be reused and further validated.

This evaluation step, based on a functional analysis of the task and empirical studies that show connec-

tions between systems and behavior, provides qualitative bounding constraints for the modeling effort.

The ATC task has a strong visual perceptual component.' In functional terms, the eyes are responsible

for finding features in the world that will trigger task-relevant behavior. Eye scan patterns affect what can

be seen and when it can be seen. Therefore, we hypothesized that perception must have a significant influ-

ence over task performance.

The memory system also plays a key role in this task. There is often a long delay between attending to a

blip on the display and performing an action on it. For example, when handing off an aircraft, one of the

important features to be remembered is what action was last performed on the aircraft. Another feature is

blip location. The volatility of human memory in situations such as these is readily observed in subjects and

reported by them. Memory effects influence the overall task performance.

Knowledge in the cognitive system is inherently related to performance because it provides the strategies

and decision-making processes for the task. In addition, the cognitive system can have strategies for coping

with the limitations of the perceptual and memory systems. For example, memory rehearsal can be used to

enhance one's ability to recall an item. Although all subjects should have the same task knowledge (per the

task instructions), they can also employ vastly different knowledge (e.g. pre-existing heuristics; their own

1 Throughout this report, we use the term perception to refer to the sensory, perceptual, and the ocular motor function-
al of the eye.
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resolution of ambiguities in the task) and biases (driven by motivation, personality, etc.) Arguably the

greatest source of within and between-subject variability is due to by the knowledge.

The contribution of the manual motor system (hand movements) to performance was expected to be

insignificant for the ATC tasks. We came to this conclusion because once a task action sequence is trig-

gered, its constituent steps can (nominally) be performed ballistically, without intervening reasoning, pro-

ducing roughly the same execution times regardless of the task conditions. 2 Therefore, we could have

represented motor behavior as a simple, constant-time process. However, because mouse movements influ-

ence eye-scan patterns through the eye-hand coordination required to move the mouse, we modeled man-

ual motor behavior.

Other human "systems" could be considered in this kind of analysis. For example, the influence of the

motivational, emotional, physiological (e.g. fatigue, stress, etc.) "systems" could have been assessed. We

instead made the simplifying assumption that, on average, these systems had an insignificant effect on

overall performance.

Taken together, this qualitative analysis suggested a significant influence of the perceptual, memory, cog-

nitive, and motor systems on task performance, not only due to the individual systems but also the interac-

tion of those systems. From this we conclude that we should construct a model that not only captures the

details of the individual systems but can also their interaction.

3.0 ARCHITECTURE

The preceding analysis indicated we should use an architecture that provided psychologically-plausible

implementations of perception, cognition, memory, and motor systems. EPIC-Soar (Chong & Laird,

1997), a combination of EPIC (Kieras & Meyer, 1994; Meyer & Kieras, 1997a, 1997b) and Soar

(Rosenbloom, Laird, & Newell, 1993; Newell, 1990), provided all of these elements except for a

straightforward account of memory effects (forgetting).

During the course of the AMBR project, EPIC-Soar was extended to include base-level learning, the

fundamental memory mechanism in ACT-R (Anderson & Lebiere, 1998), to provide a validated account

of memory volatility and retention. With this addition, EPIC-Soar was renamed to EASE, for Elements

of ACT-R, Soar, and EPIC. EASE is a hybrid system, incorporating both symbolic and subsymbolic rep-

resentations and mechanisms. We briefly describe each of these architectures, in order of their integration

into EASE, concentrating only on aspects relevant to AMBR.

2 When task action execution time was later analyzed, no significant effect of task condition (aided/unaided) or diffi-

culty was found, confirming this assumption.
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3.1 Soar

Soar is a general architecture for building artificially intelligent systems and for modeling human cognition

and behavior (Rosenbloom, Laird, & Newell, 1993; Newell, 1990). Soar has been used to model central

human capabilities such as learning, problem solving, planning, search, natural language, and HCI tasks.

Soar is a production system that has been significantly extended to include mechanisms and structures

believed to be functionally necessary for producing intelligent behavior. The processing cycle consists of a

search for operators, the selection of a best operator, and the application of the operator. Operators encode

persistent actions in Soar, and generally correspond in function to the productions of ACT-R and EPIC.

Soar has two memory representations: procedural memory is represented by production rules, and declara-

tive memory represented by attribute-value structures.

There are occasions when knowledge search is insufficient and does not lead to the selection or applica-

tion of an operator. This situation is called an impasse. To resolve an impasse, Soar automatically creates a

subgoal where processing focuses on selecting and apply operators to resolve the impasse in order that pro-

cessing in the parent goal can resume.

Soar incorporates a single learning mechanism called chunking. Chunking compiles the results of prob-

lem solving in a subgoal into new production rules. When combined with various problem solving meth-

ods, chunking has been found to be sufficient for a wide variety of learning (Wray & Chong, 2003; Chong,

1998; Miller & Laird, 1996; Lewis, et al., 1990).

One weakness of Soar is the difficulty of producing memory effects such as forgetting. In humans, for-

getting is the default, non-deliberate condition, while remembering requires an effortful process (e.g.

rehearsals or the use of a reliable encoding) or multiple exposures of the stimuli. Soar's declarative memory

system has exactly the opposite properties: remembering is the default condition while forgetting requires

the deliberate act of removing items from memory. Although Soar's present memory mechanisms can

account for some memory effects (Young & Lewis, 1999), the architecture does not require models to fol-

low such accounts. Performance in the ATC task, based on the system-level analysis, appears to be strongly

influenced by memory effects. Therefore, we chose to explore an architectural change to EPIC-Soar for

producing such memory effects.

3.2 EPIC

In contrast to Soar, which is theoretically silent on the topics of perception and action, EPIC's perceptual

and motor processes provide sophisticated accounts of the capabilities and constraints of these systems.

EPIC (Executive Process-Interactive Control) (Kieras & Meyer, 1997; Meyer & Kieras, 1997a, 1997b) is

an architecture whose primary goal is to account for detailed human dual-task performance. It extends the

work begun with the Model Human Processor, MHP (Card, Moran, & Newell, 1983). Like MHP, EPIC
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consists of a collection of processors and memories. There are three classes of processors: perceptual,

cognitive, and motor. However, the EPIC processors and memories are much more elaborate, each

representing a synthesis of empirical evidence and theories. Unlike MHP, EPIC, being an architecture, can

be programmed and executed.

EPIC includes three perceptual processors-visual, auditory, and tactile. These receive input from simu-

lated physical sensors. The visual perceptual processor, which is of particular interest for the ATC task,

represents the eye's retinal zones (bouquet, fovea, parafovea, periphery) and the constraint of feature avail-

ability as a function of retinal zone.

The output of perceptual processors is sent to the cognitive processor. The cognitive processor consists of

working memory, long-term memory, production memory, and a multi-match, multi-fire production sys-

tem. The cognitive processor performs task reasoning and initiates actions by sending output commands to

the motor processors: ocular, vocal, and manual.

Similar to Soar, EPIC uses a memory system where persistence is the default. The cognitive processor

has no learning mechanism. The merging of EPIC and Soar provided a system that gave good coverage of

perception, cognitive, learning, and motor behavior. The missing component, for the AMBR task, was a

plausible memory system

3.3 ACT-R

ACT-R (Anderson & Lebiere, 1998) is a hybrid architecture that implements a theory of cognitive

adaptation. ACT-R, at the symbolic level, like Soar and EPIC, is a production system, representing

procedural knowledge as production rules and declarative knowledge as attribute-value memory structures.

ACT-R features many subsymbolic mechanisms that each address a specific form of cognitive adaptation.

In general, these mechanisms modulate the availability of symbolic elements (declarative and procedural),

as well as the time to retrieve these elements from memory.

One of these mechanisms is called base-level learning. It assigns each declarative memory element an

activation. The activation learning mechanism varies the activation of each chunk as a function of its

recency and frequency of use. When a memory element is created, it is assigned an initial level of activa-

tion. The activation begins to decay exponentially as a function of time. If the activation falls below the

retrieval threshold, the memory element cannot be retrieved and is effectively forgotten. As a consequence,

the memory element is not available to satisfy the conditions of a production rule. A memory element's

activation is boosted through several avenues: use (through task-related recall); spreading activation from

associated memory elements; activation noise. The decay process immediately resumes after an element's

activation has been boosted.
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3.4 EASE (Elements of ACT-R, Soar, and EPIC)

ACT-R, Soar and EPIC provide unique strengths that EASE combines into one hybrid, integrated

architecture. EPIC has perceptual and motor processors but, presently a non-learning cognitive processor.

Soar, in contrast, has no perceptual or motor processors but is a learning cognitive architecture. ACT-R

contains mechanisms for representing memory effects that exist in neither EPIC nor Soar. EASE (Figure

2) is an integration of the sensory, perceptual and motor processors of EPIC, one of the memory

mechanisms of ACT-R, and the cognitive mechanisms of Soar.

In EASE, cognition (Soar) receives perceptual and motor processor messages (from EPIC) as input to its

working memory, and returns motor processor commands to the motor processors (EPIC) as output based

on the processing of the inputs. EASE's version of ACT-R's base-level learning mechanism is controlled

by this activation equation:

Equation 1: Ai =13+ ln(Itj) + e

The primary difference between Equation 1 and the ACT-R activation and base-level learning equations

found in Anderson and Lebiere (1998) is that the spreading activation component is not used. (ACT-R's

Simulated Simulated
interaction senors &
devices ealectors

Figure 2: Diagram of the EASE hybrid architecture. The sensory, perceptual and motor processors are provided by
EPIC; Soar provides the cognitive control and symbolic learning; the base-level learning mechanism of ACT-R pro-
vides subsymbolic modulation of declarative and procedural knowledge through the base-level learning mechanism,
represented as 8p and 6w.
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spreading activation and association mechanisms have not yet been incorporated into EASE.) The base-

level learning mechanism is controlled by four free parameters, three of which are variables in the activa-

tion equation:

* Base-level constant (p3): this value specifies the initial activation given to a newly created memory ele-

ment. 03 in our model was set to 1.0, a value used in many ACT-R models.

* Learning rate (d): the rate of activation decay The ACT-R default of 0.5 was used.

* Transient noise (E): noise is sampled from a zero-centered logistic distribution and added to an ele-

ment's activation. A commonly used ACT-R value of 0.25 was used.

• Retrieval threshold: when activation falls below this value, the memory element cannot be retrieved and

is effectively forgotten. The ACT-R default value of 0.0 was used.

Importantly, these parameter values were not tuned to produce the fits presented later in this report. In

accordance with our modeling philosophy, these ACT-R values, determined through successful modeling

of a wide range of behavior, were used as a constraint on the model building process.

EASE inherits the detailed predictions and theory embodied in the sensory, perceptual and motor sys-

tems from EPIC, the cognitive problem solving, planning, and symbolic learning capabilities of Soar, and

the constraints of human memory provided the ACT-R mechanisms, as well as the reuse of default and

commonly used free parameter values.

4.0 MODELING CATEGORY LEARNING: INTRODUCTION

The task environment used in AMBR Phase I was extended to include a category learning task. The

learning task is isomorphic to the study performed by Nosofsky, Gluck, Palmeri, McKinley & Glauthier

(1994). Figure 3 shows a comparison of their data to the AMBR learning task. A main effect of problem

type was found in both Nosofsky, et al. (1994) and the AMBR data. However, the AMBR aggregate

learning rates are much slower.

Several task differences might account for the dissimilar learning performance results. The stimuli in the

original study were composed of three orthogonal features: shape (triangle or circle), size (small or large),

interior (solid or dotted). In contrast, the instances used in the AMBR learning task consisted of contextu-

ally meaningful features, allowing subjects to benefit, or suffer, from using domain knowledge; e.g. "small

planes (SIZE = S) should avoid high turbulence (TURB = 3) so their requests should be allowed (CATEGORY

- ALLOW)." In addition to feature contextuality, the features also are more similar, relative to one another.

8



7),1-0- -d y
0-5 ATC

0.3 .

0.2 0.1

1 2 3 4 5 6 7 8 1 2 3 4 1 6 7 6 1 2 3 4 5 6 7 8

Bloks Ba.c. BlocksFigure 3: A comparison of the learning trajectories for Nosofsky, et al. (1994) and the ATC study.

All features were represented with alpha-numeric characters, and some features (e.g., S and 3, L and 1)

share similar shapes.

A second task difference is the presence of a secondary task. Where subjects in Nosofsky, et al. (1994)

performed only a category learning task, the AMBR subjects performed both a category learning and per-

formance task. This may account for the learning difference; e.g., perhaps the secondary task "consumes"

limited cognitive "resources", slowing learning. (This task was specifically designed to produce this kind of

slowing.) However, AMBR control subjects-those exposed to the full learning and performance scenarios

but who only performed the learning trials and ignored the ATC task-learned as slowly as non-controls.

This finding suggests that reduced learning performance of the ATC task may not be due to the existence

of the secondary ATC task.

SA third task difference that may contribute to the performance difference is that subjects in Nosofsky, et

al. (1994) were self-paced: a stimulus appeared, the subject made a classification, feedback was given, and

the process repeated. Though not reported, an inter-stimulus time on the order of five seconds is a reason-

able guess. In the AMBR learning task, sixteen altitude requests (category learning stimuli) were presented

over a ten-minute scenario, giving an average inter-stimulus time of thirty-seven seconds; a seven-fold

increase. Perhaps this differences in inter-stimulus time also contributes to the difference in learning rates.

4.1 Motivating an architectural approach for modeling category learning

There are many existing models that fit the Nosofsky, et al. (1994) or Shepard, Hovland, &Jenkins, (1961)

data: Nosofsky, et al. (1994) present the fits of four exemplar-based models; Nosofsky, Palmeri &

McKinley (1994) present the fit of RULEX, a hypothesis-testing model; Love & Medin (1998) report the

fit of SUSTAIN, a network model of human category learning.

Any of these models, by virtue of demonstrating good quantitative fits to the Nosofsky, et al. (1994) data

(and a number of other data sets), could have been recruited to the AMBR learning task. However, these

models are all stand-alone models; they are purpose-built systems that perform only category learning and

are not situated within a larger modeling framework. We prefer implementing models within the larger
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theoretical context of a cognitive architecture. When used appropriately, the architectural approach

addresses some of the limitations of many stand-alone models:

* No account ofprocess: Few of these models are process models. Process models are desirable because they

declare the individual steps and mechanisms-perceptual, cognitive, and motor steps-that define

behavior. Most cognitive architectures, being based on production systems, naturally accommodate

process models of behavior.

* Unable to make time predictions: Human data collected for the ATC task included the time to respond

to an altitude change request; in other words, the time required to produce a category prediction.

Response time predictions cannot be produced, in a principled way, by most stand-alone category

learning models. However, production system based architectures have a cycle-based means of

accounting for time. Time predictions are a by-product of model execution and a function of model

complexity. If two models produce similar behavior (e.g., producing a category prediction) but one

requires 100 cycles while the other requires 50 cycles, then their time predictions will be different.

Therefore, time predictions serve as a critical post-hoc constraint in architecture-based models.

• Human memory limitations ignored: Few stand-alone learning models represent memory effects, such as

forgetting. In some cases, memory effects have been simulated by imposing arbitrary constructs such as
"capacity limits" or "probability of storage". Architectures may include primitive mechanisms that

influence properties of memory. For example, the base-level learning mechanism of EASE (inherited

from ACT-R) modulates the availability of knowledge. Therefore, memory effects such as apparent

capacity limits, apparent probability of storage, forgetting, and priming can emerge from primitive

memory mechanisms.

* Large number offtee parameters: Models often rely on free parameters to improve their fit to data. Free

parameters are placeholders for details that are yet to be uncovered or implemented. All things being

equal, one would prefer a model with the fewest free parameters. Stand-alone models often contain a

large number of free parameters. For example, RULEX contains ten free parameters that manipulate

selection of a learning strategy, memory characteristics, and response error rates, among others. In con-

trast, the philosophical and theoretical pressures of architectural approaches encourage the parsimoni-

ous use of free parameters. Building models on a slowly evolving set of primitive mechanisms implies

using a slowly evolving set of free parameters. Architectural mechanisms and their parameters are task-

independent and therefore must apply to all models regardless of the behavior under study. Finally, as

architecture-based models are validated, an acceptable range of values for each free parameter is often

identified, providing further constraints.
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* Insensitivity to inter-stimulus time: Stand-alone models are usually insensitive to time. They would pre-

dict the same performance if learning trials occurred ever 10 seconds or once per hour. The base-level

learning mechanism in EASE is responsive to the recency and frequency of use of memories. There-

fore, the availability of memories is affected by the timing of events in the environment or by the use of

memories within a model.

* Isolated learning: It is unclear how stand-alone models could be made to be sensitive to the presence

and possible interference of a competing task. This makes them inappropriate for modeling or predict-

ing the effect a secondary task may have on learning. Architectures allow individual models to be exe-

cuted together. EASE models of category learning were first developed in isolation, then integrated

with the ATC model developed for Experiment 1. The architecture thus provides an environment for

composing behavior and exploring if and how multiple tasks interact. Although architectures do not

guarantee that combined models will produce and explain all psychologically-meaningful interactions,

it does at least provide a framework and some constraints for this kind of exploration.

The remainder of this report presents the development of two architecture-based category learning mod-

els along with their fits and predictions. The first model is based on the reuse and extension of an existing

Soar category learning model, Symbolic Concept Acquisition, SCA (Miller, 1993; Miller & Laird, 1996).

The second is a new process model, RULEX-EM, inspired by RULEX, and incorporates both rule and

exemplar representations as well as memory effects.

These models explore two alternate explanations for the learning differences depicted in Figure 3: the

role of contextually meaningful features and the influence of inter-stimulus time. The SCA model posits

that performance differences derive from the use of additional but irrelevant information available in the

AMBR task; this additional information decreases the learning rate in the model. The RULEX-EM

model explores the interaction of memory effects and prediction strategies to produce learning rates sensi-

tive to problem difficulty. Both models emphasize the reuse and extension of existing category learning

models, which is a critical aspect of the UTC philosophy. The key point of difference between the models

is the role that knowledge and architectural mechanisms play in producing behavior, resulting in contrast-

ing explanations of the data.

5.0 MODEL 1: SYMBOLIC CONCEPT ACQUISITION (SCA)

Working within an architectural theory requires model reuse and cumulation (Newell 1990). Symbolic

Concept Acquisition (SCA) is an existing model of category learning in the Soar theory. We adopted SCA

because the architectural philosophy dictates that we should seek to reuse existing models and SCA is the
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1. instance = features and values /* from perception *
2. while (no matching prediction rule for instance)
3. abstract feature from instance
4. remember most recently abstracted feature
5. if (no feedback) return prediction else
6. restore most recently abstracted feature to instance
7. store new prediction rule for instance

Figure 4: A pseudocode representation of the SCA algorithm.

only extant Soar category learning model. Although developed over a decade ago, we were able to reuse the

model's code.

A second important component of the modeling philosophy is to work within the constraints of the

architecture and without introducing extra-architectural or new mechanisms. For example, because chunk-

ing is the Soar architecture's sole learning mechanism, we chose to limit ourselves to this mechanism alone

for the SCA model. For this reason, the base-level learning mechanism in EASE was not used in the SCA

model.

The original SCA model also included a production-based algorithm for simulating frequency effects.

Because frequency effects are not an architectural component, we excised them from the model. Thus, an

open question in Experiment 2 was to determine if this existing model could produce results that quantita-

tively matched human learning within the constraints of the architecture, and thus without introducing

extra-architectural (or new) mechanisms. We removed the frequency effects but made no other changes to

the model that would change the results reported by Miller & Laird (1996).

5.1 Description of SCA

Figure 4 presents a high-level representation of the SCA prediction and learning algorithm. The main

body of the algorithm (lines 2-4) consists of a search for a matching prediction rule. The same search loop

is used for both prediction and learning. Prediction is performed when feedback is not available; when

category feedback is available, the model will refine its concept representation via learning. In contrast to

the RULEX-EM model presented below, SCA does not use an explicit category representation. Instead, it

focuses on the recall of prediction rules. Because all rules in Soar, including the prediction rules, are

impenetrable, SCA models cannot report a category representation without additional introspection.

For prediction, SCA performs a specific-to-general search over previously learned prediction rules. As

learning progresses, SCA learns more specific rules; i.e., rules that test more features. Thus, there may be

rules at different levels of specificity. The algorithm first attempts to recall a prediction rule for all features

(and feature values) in the instance (the condition in line 2). If no matching rule is retrieved, SCA enters

the search loop. The first step is to abstract (ignore) a feature in the instance representation (line 3).
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Available prediction rules:
1. (null) • accept
2. (null) m reject
3. fuel 20 -* accept

New Instance:
size S, turbulence 3, fuel 20
category accept
Abstraction order: size, turbulence, fuel

New Prediction Rule:
4. fuel 20, turbulence 3 ,- accept

Figure 5: Example of an SCA learning trial.

Abstracting the feature enables the search for less specific prediction rules. Determining which feature to

abstract can occur in a number of different ways; the next section presents some of these options. The

retrieve-abstract loop repeats until a matching rule is found. SCA includes rules to guess randomly when

all features have been abstracted, so a matching rule will always be found.

When learning, SCA searches for a matching prediction rule as above. When SCA retrieves a rule

matching the current instance, the prediction rule is specialized (6) by adding the last feature abstracted

from the instance (remembered at 4). SCA stores this specialized rule as a new prediction rule (7). Over

multiple learning trials, learning results in a general-to-specific search over the feature space. That is, SCA

generally learns rules sensitive to one feature, then to two, and so on. The concept representation becomes

more specific as more features (and combinations of features) are incorporated into learned prediction

rules.

Figure 5 presents an SCA learning example. The example assumes that the model has previously learned

a prediction rule (Rule 3) that indicates an instance with a fuel percentage of 20 should be accepted. A new

positive instance (S,3,20) is presented. For this example, assume the abstraction order is size, then turbu-

lence, then fuel. Because there are no matching prediction rules for all three features of the input instance,

SCA abstracts size from the instance, leaving (3,20). Again, it looks for prediction rules for these features,

and, finding none, abstracts the turbulence value, leaving (20). Rule 3 matches this instance. SCA now

specializes Rule 3, adding the last abstracted feature and value (turbulence 3). The new rule, Rule 4, indi-

cates that (3, 20) instances should be accepted. Had the example instance been negative, SCA would have

learned a prediction rule that indicated instances with fuel values of 20 should be denied. In this case, given

the previously learned prediction rule (i.e., FUEL=20 -> ACCEPT), the model would have come to recognize

that fuel values of 20 could not be used, by themselves, to make category predictions. This situation does

not rcflcct a contradiction, but rather that this feature alone cannot be used to make correct predictions.
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Random Abstraction Order Systematic Abstraction Order
0. fuel 20 1,o, accept 0. turb 1 - accept
1. size L ,. reject 1. turb 3 - reject
2. fuel 40 - reject 2. turb 1, fuel 20 -, accept
3. turb 1 - accept 3. turb 1 . reject
4. size S - accept 4. turb 1, fuel 40 -, reject
5. size L, turb 1 - reject 5. turb 3 - accept
6. turb 1 - reject 6. turb 3, fuel 20 ,- accept
7. size L - accept 7. turb 1, fuel 40, size S -* reject
8. fuel 20, turb 1 - accept 8. turb 3, fuel 40 -, reject
9. size S *. reject 9. turb 1, fuel 20, size S r* accept

Figure 6: Example progression of rule learning in random (left) and systematic (right) abstraction orderings.

In summary, SCA is an incremental learner that creates rules in a general to specific manner with respect

to instance features and values. As it is presented more examples, it acquires additional rules, gradually (but

not monotonically) improving its category prediction performance. With enough training, SCA will even-

tually learn a maximally-specific rule (one that matches all the features of an exemplar) for each training

instance. At this point, learning effectively ceases and SCA can readily predict the category of each exem-

plar by the use of its specific prediction rule. This "saturated" state represents what happens to subjects who

are overtrained in a concept learning task; they memorize each training instance and its category.

5.2 Initial "out of the box" SCA model

We began applying SCA-without the simulated frequency effects but otherwise as described by Miller

and Laird (1996)-to determine how well this minimalist model represented the human data. We

concentrated only on the Nosofsky, et al. (1994) data initially and made no attempt to fit any ATC

learning data in the first experiment. The goal was to assess the efficacy of the SCA model in capturing the

ATC learning results without any =re-engineering" of the previous model for the new domain. Such reuse

is necessary for the cumulation of results within an architectural theory.

The simulated frequency effects in the original SCA model were used to determine the abstraction

order. Thus, having removed this aspect of the original model, we had to determine what abstraction order

to use for the model. There were two obvious possibilities: random abstraction and systematic abstraction.

With random abstraction order, the search over prediction rules is similar to a breadth-first search, gener-

ating many one-feature rules, then two-feature rules, etc. With a systematic abstraction order, the search is

more like a depth-first search over prediction rules, specializing rules with the most relevant (last

abstracted) feature, to ones with the two most relevant features, etc.

Examples of the progression of rule learning for the two types of abstraction orderings are shown in Fig-

ure 6. The random approach is generally slower than the systematic approach because the depth of the

search space over all prediction rules is relatively shallow, relative to its breadth, and all leaf nodes represent
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Figure 7: Initial SCA model results for the ATC learning task (G2=673.62).

acceptable predictions (i.e., the experimental design assumed deterministic exemplars over all possible fea-

ture vectors). However, either resulted in significantly faster learning than found in Nosofsky, et al. (1994)

except for Type I, in which the random feature abstraction was slower than the human learning.

One missing element in the original SCA model was any kind of hypothesis testing or relevant feature

recognition. This omission was especially problematic in Type I problems, when most subjects likely would

quickly recognize the single feature discrimination. To capture this kind of knowledge, we added a simple

encoding of relevant feature detection. A feature can be considered relevant to the prediction when an

ignored (i.e., abstracted) feature leads to an incorrect prediction. The SCA model notes this situation and

considers the feature that was ignored a relevant feature and abstracts it last, rather than randomly, in the

future. This relevant feature detection allows the model to learn Type 1 (single dimension) categories more

quickly. The chosen feature can change as the model is run, so that a model attempting to learn a Type 6

category will continue to try different features as relevant.

Figure 7 illustrates the ATC+SCA model results (30 model runs per problem type). The results reflect a

poor fit to the aggregate human data; the G2 aggregate fit statistic is 674. While there is a category and

block effect-duplicating the qualitative results of Miller (1993)-the SCA mean learning rate for each

problem type was much faster than the mean of the human subjects.

5.3 SCA as a Model of an Individual

Given the constraints imposed by methodology and architecture, we turned to the human data to

understand what humans were learning during task performance and to provide guidance in adapting SCA

to fit the human results quantitatively. Other solutions might be to consider new learning algorithms; one

is introduced in the, next section. However, because we are embracing the constraints of an architectural

approach, it was important to explore further the possibilities of explaining the results within the context of

the existing architecture and category learning model.

The BBN analysis of initial results focused exclusively on aggregate data. We examined the learning tra-

jectories of individual subjects to determine if they corresponded qualitatively with the learning trajectories

of individual model runs. Figure 8 plots the human individual data for Types 1, 3 and 6 category learning
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Figure 8: Individual and aggregate human data compared to the aggregate SCA data.

in the ATC task. These figures more effectively communicate the large variation in human subject learning

trajectories. For example, for Type 1, four subjects failed to recognize the relevant feature by the end of the

final block; the error of just these 4 subjects accounts for the error in block 8; other subjects had learned the

category. For Type 6, one subject learned the correct classifications by block 2, while almost a third of the

subjects were still performing at chance in the eighth block. Further, the trajectory of no individual human

learner matched the shape of the aggregate human learning curve. This observation is important because it
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highlights the importance of our overall philosophy. Tuning the learning to match the aggregate learning

might result in improved fits, but would not likely shed further light on human behavior, because individ-

ual behavior is distinct from the aggregate in this task.

In the SCA model used to generate Figure 7, the model knowledge is identical across all model runs and

there are no learning parameters other than this (constant) model knowledge. Hence, the initial SCA

model is better viewed as an individual model rather than models of a population of subjects. Although

SCA's learning rate appeared much too fast in comparison to the aggregate, the SCA results for the three

problem types are within the bounds of the fastest and slowest human learners. Individual SCA learning

curves also qualitatively matched the shape of some individual learning curves. SCA provided an exact fit

to nine Type 1 subjects and to at least one subject for each type if the first block (essentially random guess-

ing) is ignored. Thus, some SCA individual runs matched individual humans.

The limitations of creating models that match aggregate data alone are widely recognized (Estes, 2002).

The analysis at the level of individual learners provided evidence that the SCA model might not be nearly

as poor as one-dimensional comparisons to aggregate data suggested. This analysis provided the impetus to

continue using SCA to model the ATC learning task. We now discuss improving the aggregate fit by

introducing more complex feature mappings and simulating knowledge differences in subjects.

5.4 More Complex Feature Mappings

One major difficulty in modeling learning experiments is that models tend to focus only on a restricted set

of features, those to which the experiment instructed the subjects to attend. However, the brain interprets

its environment, notices features, and learns continuously. Subjects (consciously or unconsciously) are likely

detecting, and possibly using, all sorts of features aside from the ones instructed in the experiment.

The initial SCA model for the ATC task employed only three binary-valued features to represent the

feature space for the learning task. Because SCA performs a refinement search over feature space when

learning, its learning rate is sensitive to the number of features; they define the size of the search space. For

the ATC experimental conditions (3 features and 2 dassifications), the size of search space is only 54 pre-

diction rules. One of the reasons SCA learns so quickly is that the size of the search space is so trivial.

We empirically and mathematically explored the sensitivity of SCA to the number of binary-valued fea-

tures. For example, for 4 features, the learning rate is not significantly affected and the total search space

remains modest (162 total rules). For 6 features, however, in the 8th block, probability of error is only

slightly better than chance for Type 6. For 6 binary features, the total search space is 1,458 total rules and,

thus, after 128 trials, less than 10% of the search space will have been explored. This analysis demonstrates

that the introduction of additional features would slow the learning rate dramatically, and thus potentially

improve the fit to the aggregate human data.
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S# Responses suggesting a consideration of factors other than fuel, turbulence, and aircraft size

1 Other features: "...I thought it might be the direction, the area it was in, the location of nearby planes
and the amount of fuel for the size of the plane..."

19 Other features: "...I also took into consideration the direction the plane was moving..."

24 Weighted factors: "...it took me several rounds to discover the importance of the turbulence rating.
Before I discovered this, I paid more attention to fuel and size"

30 Constructed features: "The planes that had all the lowest descriptions together or the highest descrip-
tions all together were accepted."

39 Semantic interpretation: "High turbulence meant to me that smaller aircraft could not change altitude.

41 Constructed features: "I rejected all double positives and double negatives i accepted the ones only
with a negative and a positive"

46 Semantic interpretation: "It would make sense that a small plane with low fuel with high turbulence

would want to change altitude, and be granted that right in succession."

51 Other features: "...partially by locale."

58 Semantic interpretation: "It was hard not to think logically about whether or not the planes should be
allowed to increase their altitude. Smaller planes with less fuel and a high turbulence, to me shouldn't
be allowed an increase on their altitude."

60 Other features: "...how close they were to the intersection with other planes..."

64 Semantic interpretation: "I felt my strategy was more of common sense too; a small plane experiencing
heavy turbulence and light on fuel would definitely need make some adjustments."

77 Other features: "...I used percent of the fuel and direction of the airplane as cues..."

83 Other features: "...First i thought you had to change the altitudes when two planes were about to
crash. Then I thought it dealt with the N/S and E/W directions..."

86 Constructed features: "After the first couple of trials, I noticed a pattern. For example, I knew that if it
was 20 S 3 it had to be true and if it was 40 S 3 it had to be false. I just assumed the opposite: If 20 S 3
was true, then 40 S 3 had to be false and so on."

87 Other features: '...At first my strategy was more complicated than necessary. I looked at the direction
of the plane, and chose reject for each, until I discovered which was correct in each direction..."

Table 1: Human subject self-reports of their learning process.

An obvious possible source of additional features is the additional information available on the screen.

Within the immediate vicinity of the instance features to which subjects were instructed to attend are the

iconic representation of the aircraft (pointed in one of four different compass directions), a text string rep-

resenting the airline name, and a three digit flight number. Subjects were given explicit instructions to

ignore all but the instance values but some human subjects reported that their hypotheses and learning

were influenced by these additional factors in the post-test questionnaire. Table 1 lists the subjects that

reported being influenced by additional stimuli. Further, because participants likely perceived this informa-

tion, it is still possible that it influenced their categorization processes even if not reported (e.g., some sub-
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jects answered the question about strategy change with "my strategy did not change after I determined the

pattern").

In addition to considering extra features, Table 1 also shows that subjects considered still other factors

when performing the decision task. Some constructed new features from the combination of features (e.g.,

Subject 30's consideration of "all high" or "all low" inputs). Some may have considered the type of the val-

ues. For example, one subject reports aircraft with 20 gallons of fuel, rather than 20% of its fuel remaining.

Many reported being influenced by the meaning of the features in the context of the task, such as Subject

58, who thought that small planes in high turbulence should be allowed to change their altitude, based on

a semantic interpretation of the features. Close to 20% of the subjects in the study reported being influ-

enced by one of more of these additional factors.

Further, the features themselves could also be considered as more complex than a simple attribute.

Unlike the orthogonal stimuli used by Nosofsky, et al. (1994), all of the feature values are alphanumeric,

suggesting more fine-grained discrimination between features could be necessary. Some co-occurring fea-

ture values have similar shapes (e.g., "S 3" and "L 1") and the fuel value is represented by 2 digits ("20" or

"40"). Thus, it is plausible that more than just a single feature could be associated or constructed from an

individual input value.

These examples illustrate that information excluded or not considered in the instructions can (and did)

influence human subjects. However, the individual data subjective reports are anecdotal and insufficient for

determining how to enumerate and codify these effects. To resolve this lack of specificity, we chose to sim-

ulate these effects with a number of additional, random values. These values are thus normative rather than

descriptive, but are meant to capture the effect of attending to non-relevant features, considering the

meaning, type, and interrelationships among relevant features, constructing new features from combina-

tions of relevant features, and the possibility of perceptual discrimination issues among the alphanumeric

feature values.

A better, more detailed model would explain how and why subjects create, consider, and attend to addi-

tional features. However, a lack of precision at this level of specification is a limitation of all models of cat-

egory learning, not only SCA. By adopting this approach, we simply introduce the number of features as a

model parameter. However, one of the positive consequences of the constraint of the architecture and

model is that they led us to consider these issues. Because the architecture lacks other parameters that

might mask these effects, SCA predicted that additional features would play a role in human learning.

5.5 Abstraction Strategies

Looking at the individual data also led us to consider a number of potential abstraction orderings, rather

than the single method used initially. We observed that for Types 3 and 6, some human subjects exhibited
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steady progress to zero error, some subjects made little improvements after repeated trials, and some

regressed, exhibiting decreasing error for a number of blocks and then suddenly increasing. These patterns

corresponded qualitatively to the three possible options for abstraction order outlined previously. A model

with a fixed or systematic abstraction order will converge relatively quickly to zero error, even when critical

features are abstracted early in the abstraction process, because less of the total feature space needs to be

examined. A random abstraction order results in relatively slow progress because a much greater portion of

the feature space will be examined. This unsystematic strategy leads to very slow progress when the

number of features (and thus the feature space) is larger. Finally, for Types 3 and 6, relevant feature

detection can lead to increases in the error. Even when the relevant feature is incorrect, it will stabilize

abstraction order for a time and a consistent portion of the feature space will be examined, leading to a

decrease in the error. However, when the model recognizes another relevant feature candidate, it changes

the abstraction order and moves to a different part of the feature space. This move can increase the error

because the model may have learned few prediction rules in the new area of the feature space.

5.6 Populations of Models

Given the possibilities outlined above, we now had twelve options for instantiating an SCA model (i.e., 0

to 3 extra features and 1 of 3 different strategies). These options spanned the variation in human learning

and qualitatively matched specific learning trajectories. The result is a population of models for the

category learning task. Because, as we described above, the human data was insufficient to provide specific

guidance for choosing distributions of features and strategies, model instances were instantiated randomly

from a uniform distribution of the population of models. As before, the model was run thirty times for

each problem type using the uniform distribution for each category.

5.7 Model Results

The model was fit only to the learning rate by problem type data; i.e. the human data in Figure 7, and to

the subject workload data (described below). All other matches to the human data are realized without any

parameter fitting for the additional phenomena; they arise completely from the fit obtained against the

basic human data and the model itself.

Figure 9 illustrates the extended SCA model results for Types 1, 3 and 6. These results provide excellent

fits for Types 1 and 3, and a reasonable fit for Type 6. The G2 statistic for the aggregate fit is 9.96. Quali-

tative fits improve as well. Although non-uniformly distributed parameter values can improve the fit fur-

ther, the uniform distributions of model types and feature vectors provided a good fit to the data with

inimiaiial additiun-al assumptions. Plots of individual model data, shown in Figurc 11, rcvcal a similar distri-

bution to the individual human.
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Figure 9: Extended SCA learning results (G2 =9.96).
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Figure 10: Some predictions of the extended SCA model:" primary task mean RT (SSE=39.33); secondary task mean
RT (SSE=114.73); secondary task penalty points (SSE=2720.29).

Figure 10 shows other performance predictions of the model. The top plot graphs the mean reaction

time to respond to a category learning trial.3 As would be expected, after a few blocks, in the aggregate
humans respond faster to Type 1 instances than Type 3 and Type 6. However, SCA fails to capture this

effect, responding in roughly the same amount of time for each type of instance. This omission occurs

because the abstraction process (the ioop in Figure 4) is insensitive to problem type, and thus the time to

respond, within SCA itself, will always be comparable. A model that more deliberately considered strate-

gies and options when switching to the classification task might naturally account for differences in reac-

3 This time is measured ornm the moment a blip turns MVAG•ENTA until the subject/model clicks the SiEND button to
complete the message. Thus, these mean RTs include the perceptual-motor time of composing the message. The time
determine a prediction alone was not recorded.
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Figure 11: Comparison of human and model individual learning data.

.tion times between Type 1 and Types 3 and 6, because Type 1 tasks, for most subjects, will quickly be

perceived to be easier and thus require less strategic deliberation.

The middle plot in the figure is the mean reaction time measured from when a blip changes color and

when the SEND button is pressed for the ATC task. The bottom plot shows the mean penalty points

accrued for the ATC task.
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Nosofsky, et al. (1994) showed that human subjects learn to classify Type 3 "peripheral" stimuli more

slowly than "central" ones. SCA was previously shown to replicate this effect qualitatively (Miller, 1993).

Figure 12 shows quantitative predictions for the AMBR learning task.

5.8 Number of Perfect Learners

Analysts at BBN introduced the notion of a perfect learner, a subject whose block 8 error was zero. Table 2

shows the number of human perfect learners and SCA perfect learners. Prior to its extension, all SCA

model runs reached zero error by the 8th block. The number of SCA perfect learners in the extended

model was nearly exact for Type 1 and Type 3 but off by a factor of 2 for Type 6. Comparing the number of

perfect learners is important as a simple measure of the variability captured by the model. For example,

models tuned very closely to the aggregate learning data might show many fewer perfect learners because

the error in the last training block for all three problem types is greater than zero.

Problem Type Humans SCA, Original SCA, Extended

1 24 30 23

3 15 30 15

6 6 30 12

Table 2: Number of perfect human and model learners by problem type.

6.0 MODEL 2: RULEX-EM

Many of the existing category learning models commit to learning as the acquisition of rules (hypotheses)

or exemplars exclusively. As is the case with many dichotomies, progress often occurs with a theory that

can best reconcile alternative perspectives. Empirical work by Minda & Smith (2001) shows that both

representations are used in learning and identifies characteristics of the category that can cause one

representation to be more prominent than another. Erickson & Kruschke (1998) and Anderson & Betz

-0-SCA-

0.4
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Figure 12: Prediction of "central" and "peripheral" Type 3 stimuli (G2 =3.46).
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(2002) are examples of work to reconcile both representations into a coherent model. Similarly, we

developed a model that employed both representations.

The hypothesis-testing process model, RULEX, was selected as a starting point because it is a process

model and had demonstrated good fits to rule-based classification learning (Nosofsky, et al., 1994). The

end product is a distinct process model that incorporates both rules and exemplars, includes memory

effects such as forgetting, and relies on a smaller, more principled set of parameters. The model we devel-

oped is called RULEX-EM, reflecting the addition of Exemplars and Memory constraints.

6.1 Model Description

Like RULEX, the model uses a homogeneous representation for both exemplars and rules. Both are four-

tuples, consisting of the three instance features (FUEL, SIZE, TURB) and an associated category (ALLOW or

DENY). Both declarative representations are subject to forgetting through the base-level learning

mechanism.

Exemplars are defined as fully specified four-tuples: values of all three instance features and the category

(determined after receiving feedback) are specified. For example:

EXEMPLAR: [FUEL = 20; SIZE = S; TURB = 3; CATEGORY = ALLOW]

The system contains two kinds of rules. A single-feature rule is one where the value of only one of the

three instance features is specified and the remaining features are unspecified (shown below as a c*'). The

following single-feature rule applies to all instances where TURB is 3:

SINGLE-FEATURE RULE: [FUEL = *; SIZE = *; TURB = 3; CATEGORY = ALLOW]

The second kind of rule, an exception rule, is a two-feature rule. Following RULEX, an exception rule is

a specialization of a single-feature rule; it tests a feature in addition to the one tested by a failed single-fea-

ture rule. The following exception rule could be derived from the single-feature rule above:

EXCEPTION RULE: [FUEL = *; SIZE = L; TURB = 3; CATEGORY = DENY]

A block diagram of the model is shown in Figure 13. Like RULEX, the model has two distinct phases-

prediction followed by learning. Beginning after an instance appears and is perceived, the prediction phase

tries prediction strategies-from specific-to-general-to determine the category of the instance. This

approach, inherited from RULEX, is similar to SCA's specific-to-general search for prediction rules.

Unlike RULEX, the first step is to try to recall an exemplar for the given instance. If successful, the cate-

gory specified in the CATEGORY slot of the recalled exemplar is produced. Because exemplars are subject to

forgetting, this recall strategy can fail.
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If so, the model tries to recall an exception rule. If several exception rules can be recalled, the model tries

the most highly activated rule. In general, this is the rule most frequently and/or recently used. If the

recalled rule can be applied, a category prediction will be output.

If the exception recall strategy fails (either because no exception rules could be recalled or because none

could be applied), the model then tries to recall a single-feature rule. If no single-feature rules can be

recalled, the model will guess the instance's category. If a rule can be recalled and applied, the category pre-

diction is output.

If a single-feature rule is recalled but cannot be applied, the model will produce the opposite category as

specified in the rule. We surmised that subjects, realizing that the feature values and categories in this task

are binary, might choose a category response that is the complement of the one specified in the recalled

rule. Subject 86 in Table 1 reports performing such an inversion. To illustrate, suppose the instance is [20 S

1] and the model only has the single-feature rule shown above. The rule does not match because the TURB

values are complements. A reasonable response might then be to produce the complementary category; i.e.

DENY.

After a prediction has been made and feedback provided by the environment, the model enters the learn-

ing phase. The learning behavior used depends on the feedback and the strategy used to make the predic-

tion.

If an incorrect prediction was made, the model will always create an exemplar, as defined above. (Creat-

ing a duplicate of an existing exemplar or rule results in an increase of the activation of the existing exem-

plar or rule.) Next, the model rehearses the exemplar. Rehearsals boost activation to increase the likelihood

a memory element will not be forgotten.

If the incorrect prediction was due to:

"* a guess, the model will create and rehearse a single-feature rule by randomly selecting one of the fea-

tures of the instance and associating it with the current category.

"* a single-feature rule, the model will create an exception rule. An exception rule is derived from the failed

single-feature rule by using the specified feature value in the rule and one other randomly selected fea-

ture value from the instance. The exception rule shown above could have resulted from the presenta-

tion of [20 L 3] and the recall of a previously learned but incorrect single-feature rule.

If a correct prediction was produced, then the learning behavior is dependent on the prediction strategy,

as follows:

"* a guess or exemplar recall.- the model creates and rehearses the exemplar.

"* an exception rule: the model rehearses the exception rule.
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Figure 14: The fit of the RULEX-EM model to the human learning rate data. Error bars designate 95% confidence
intervals. (G2=5.64)

"a single-feature rule: If a single-feature rule was directly applied, the rule is rehearsed. If the model took

the complement (or "inverted") a single-feature rule, then the model creates and rehearses a single-fea-

ture rule representing the inverted rule.

Due to the architectural base-level learning memory mechanism, exemplars and rules can be forgotten

unless they are used or rehearsed. Rules that are predictive will be chosen and used more often, further

increasing the chance of being used and not forgotten. Rules that are not predictive will experience less use

and will eventually be forgotten. In contrast to rules, successful exemplar recall will always produce a

correct prediction. Therefore, their activation will increase largely as a function of the number of exposures.
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Figure 15: Some predictions of RULEX-EM: primary task RT (SSE=8.40); secondary task RT (SSE=15.24); second-
ary task penalty points (SSE=2043.46).
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Figure 16: RULEX-EM prediction of Type 3 learning rates for 'central" and "peripheral" stimuli (G2=5.89).

6.2 Model Results

Figure 14 shows the fit of the model to the learning data as a function of problem type. Aside from the

four parameters of the base-level learning mechanism (which were never manipulated), these fits are

accomplished using only two free parameters: the rehearsals used to reinforce exemplar and rule memories.

The best fits were achieved with rehearsals of four and seven, respectively. A goodness-of-fit analysis

produced a G2 of 5.64. The human data and model show significant effects of problem type and blocks.

Figure 15 presents a series of model predictions. For the primary task reaction time (the time from when a

blip turns magenta until when the "send" button is clicked), the human data showed significant effect of

blocks; subjects performance is improving with practice. However, there was a weak effect by type; Type 1

is different from Types 3 and 6, while Types 3 and 6 are not different from each other. For this measure,

the model was only able to reproduce the effect by blocks. There was a significant effect by block for

secondary task reaction time for both humans and the model. Finally no effect by problem type or block

was found for the mean penalty points in humans; there was a similar absence of effect for the model data.

Figure 16 presents the model's central vs peripheral prediction. There were significant effects of stimulus

type and blocks for both the human and model data. Figure 17 compares individual human and model

data. The model's variability in performance decreases as problem difficulty increases, unlike the human

data or the SCA model (Figure 10).

6.3 Insights Provided by the Model

To further evaluate the model and to gain a deeper insight into its behavior, we instrumented the model to

collect data on prediction strategy utilization as a function of experience and problem type. Figure 18

shows the collected data as a distribution of strategy use in the model for the three types of problems.

Initially, guesses are frequent, but quickly taper off as learning progresses; guesses are more frequent for the

difficult Type 6 problems. Single-feature rules are learned quickly and persist in the Type 1 condition, as

expected. However, for Type 6, single-feature rules are tried, demonstrate little utility, and yield to

exception rules. (Recall that exception rules are created when single-feature rules fail.) Exception rules
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Figure 17: Comparison of human and model individual learning data.

grow to dominate by the end of learning in Types 3 and 6, as would be expected. Exemplar recall is used

more in Type 6 problems than Type 1 because the difficulty of Type 6 causes more incorrect predictions,

which leads to increased opportunities to memorize and rehearse exemplars. The steady increase in

exemplar recall mimics implicit learning or priming effects that can occur merely from repeated exposure to

stimuli.
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Triggers Work to be done Workload value

Orange Transfer outgoing blip 3

Yellow Tell outgoing blip to contact ATC 4

Green Accept incoming blip 3

Cyan Welcome incoming blip 1

Red varied 10

Magenta Allow/Deny speed change request 10

Negative feedback Need to learn the category better 15

Table 3: "Work to be done" and associated workload values.

In this model, blip color signals when task actions are needed, therefore, realizations are based on blip

color. Table 3 also shows the workload values associated with each kind of work. The values represent the

importance or urgency of the tasks, relative to one another, as can be deduced from the task instruction and

the penalty point schedule. These values are used in this workload equation:

Equation 2: w(t) = ( * Eli / t

This formulation captures two intuitive characteristics of workload: it is a function of the amount of work

to be done per unit time, and also of the difficulty or urgency of the work to be done per unit time.

For each realization, i, the model records the associated workload value, 4i. At the end of a model run, the

total workload, Eli, is divided by the duration of the scenario in seconds (600sec), t, and multiplied by a

scaling factor, a. The scaling factor was selected to provide the best fit to the empirical data; a value of 5.

Although we prefer predictions over fitting, we knew of no pre-existing work on model-generated subjec-

tive workload work from which to borrow ideas or parameters. Instead, we developed our own model

(Equation 2) and fit the results to the data. The model fit is shown in Figure 19.
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Figure 19: Workload (SSE = 0.21) for the RULEX-EM model.
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Figure 20: Initial SCA transfer task results in comparison to human results (G2=420.09). Probability of error is plotted
for the last training block ("Block 8"), the trained instances during the transfer task ("Trained"), and for those instances
that could be unambiguously mapped to trained instances ("Extrap").

8.0 TRANSFER TASK

We have examined some predictions of SCA and RULEX-EM in the context of the eight learning blocks.

This section reports on the model predictions for the transfer task described.

8.1 SCA Transfer Task Results

Figure 20 shows the initial transfer task results for the SCA model. For this model, knowledge was added

to map unknown feature values to the values specified in the task instructions. This knowledge reflects

common sense knowledge about the values of scalars and sizes. For instance, the value 10 is closer to 20

than 40; therefore 10 will be mapped to 20. It seemed plausible that subjects would use this kind of

knowledge to map an extrapolated value to a known value for a prediction; thus, FUEL=20, SIZE=XS,

TURBULENCE=3 would be mapped to FUEL=20, SIZE=S, TURBULENCE=3, a trained instance, and the

subject would respond with the prediction learned for this instance.

There were two unresolved issues. First, mapping intermediate values (e.g., 30) included three obvious

possibilities: 1) map to the lower value, 2) map to the higher value and 3) don't change the value. Thus, an

instance with a fuel value of 30 could get mapped to the known values of 20 or 40 or not changed at all. For

the transfer task, we designed the model to make a random choice among the three options, each option

having equal probability.

Second, we considered capacity limitations on the mappings. For example, an instance of 10,4,XL

requires 3 mappings (to 20,3,L) and then the retrieval of the prediction rule for this trained instance. There

is no ambiguity in this mapping, but rather a question if subjects could readily perform all three mappings

and then retrieve a prediction for the instance. This last issue is important because perceptual cues might

be included in prediction rules (if so, subjects might respond differently to trained instances presented, ver-

bally, for example.) Because it was the simplest approach (requiring no additional assumptions about
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Figure 21: Example of the competition between abstraction and mapping.

capacity limitations or perceptual issues), the initial transfer task model completes all mappings and then

makes a prediction.

Superficially, the SCA transfer task results appeared quite discouraging. However, the overall results are

skewed by the learning rate in the original SCA model with respect to the basic learning task. Because

SCA learns all categories by the eighth training block, its probability of error for the learned instances will

be zero and all its transfer task predictions will be based on completely learned categorizations. A compar-

ison of human perfect learners to the SCA transfer task results was much more encouraging. As shown in

Figure 22, perfect learners produce an average probability of error close to zero for the trained instances,

particularly for Types 1 and 3.

The real failure in the transfer task results is the predictions SCA made with respect to the extrapolated

stimuli. SCA shows no change in probability of error for the extrapolated instances vs. the -trained

instances. These results are attributable to the complete mapping we chose. With the complete mapping,

all extrapolated instances are mapped to the corresponding trained instances, and thus will result in the

same probability of error and consistency as the trained cases. Therefore, for the revised model, we sought

a simple approach that reduced the number of mappings.

In the original model, the mapping occurred before any prediction. That is, when the model was pre-

sented an instance such as (10, L, 4), it would complete the mappings to the trained instance, (20, L, 3),

before attempting to make a prediction. The only change in the revised model was to allow prediction and

mapping to compete. Figure 21 illustrates the process. If the model abstracted the size feature in this

example ("L"), it then would consider abstracting either of the remaining values, or mapping them to train-

ing values. Prediction is accomplished though the deliberate choice to ignore (abstract) a feature, which
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Figure 22: Final SCA transfer task probability of error results in comparison to human results (G2=14.37).
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then allows the model to retrieve any prediction rules matching the partial instance. We changed the map-

ping knowledge so that the model could, with any decision, choose to map features or abstract them.

Abstraction operators are proposed at the beginning of the prediction process as well as any mapping oper-

ators (as before, equidistant values lead to the proposal of three mapping operators: map lower, map higher,

do not map). The result is that sometimes a particular feature is mapped, and sometimes it is ignored.

Figure 22 displays the final SCA probability of error results for the transfer task. The result is a much

better match to the extrapolated stimuli than was observed in the first round. However, the model fails to

predict the increase in error in the trained stimuli when presented during the transfer task. SCA provides

no inherent explanation of this effect. SCA predicts that the error rates should be the same across the block

8 and "trained" stimuli in the transfer task. There are a number of potential explanations for the increase in

error. The methodology in the transfer tasks is slightly different and some subjects took a break before

completing the transfer task, which would have led to increased delays for these presentations. An intrigu-

ing possibility is that subjects are learning something during the transfer task that interferes or inhibits

their ability to retrieve their correct predictions. If this hypothesis was true, then performance should

degrade over the course of the transfer task. Yet another possibility is that some subjects guessed wildly

during the transfer task and skewed the results of those subjects who took this task more seriously. Answer-

ing these questions might provide some guidance towards extending the model to account for this result.

However, SCA alone would not account for these differences and its failure to account for this trend in the

data represents incompleteness in its account of category learning.

7),,, -0 H 7* 3 73p6

O.6 UEXE

0,2
i.0

al.* TaMkd EWW. M S.k 8 T" 4 EO.p. 8Ok 8 T1r.I E..,

Figure 23: RULEX-EM transfer task results in comparison to human results (G2=16.23).

8.2 RULEX-EM Transfer Task Results

We used the same transfer task implementation as used in the extended SCA model, the procedure

illustrated in Figure 21. Figure 23 presents the results. First, the predictions for extrapolated stimuli

("Extrap.") are puzzling because RULEX-EM used the same mapping and abstraction process as for the

extended SCA model. We presently have no explanation for its nearly uniform prediction across problem

types. There might be an unanticipated interaction in the mapping/abstraction procedure and the memory
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Figure 24: Individual and aggregate human data for the transfer task.

effects present in the RULEX-EM model (and not present in the SCA models). This warrants further

investigation. The remainder of this section will focus on the prediction of "Trained" instances during the

transfer task.

For Type 6, The model correlates well to the human data for Type 6. However, for Types 1 and 3, the

model predicts small improvements in performance "Block 8" and "Trained" whereas the data reveals a dec-

rement in performance.
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Although the Types 1 and 3 model trends contradict the data, there are good reasons to believe the

model:

During the trainingpbase, it is possible to learn a reliable rule or successfully memorize more/all exem-

plars in the waning moments of "Block 8". The consequence is that performance for "Trained" stimuli

will be improved relative to performance in the "Block 8".

Types 1 and 3 (as illustrated in Figure 18) rely heavily on single feature and exceptions rules. This

combination provides a low degree of specificity.4 Rules, by definition, apply to multiple instances (e.g.

a single-feature rule covers four instance). During the transfer task, the use of a rule increases the rule's

activation, making it more likely to be available for the other transfer task instances covered by the rule.

In essence, the model continues to learn (in the absence of feedback), resulting in improved category

prediction performance for the trained instances. In contrast, Type 6 relies heavily on exceptions and

exemplars. The high combined degree of specificity of exemplars and exceptions-five: three for exem-

plars plus two for exceptions--allows less reuse and therefore a lower likelihood of improved perfor-

mance.

To gain more insight into performance on the "Trained" stimuli, we turned to the individual human

data. Figure 24 shows the individual and aggregate human data. Similar to the learning data (Figure 8),

there was much more variability than expected. Closer examination of the data revealed other unexpected

findings. For example, the Type 1 subject with the worst "Trained" performance (0.625) had previously

demonstrated perfect performance-P(e)=0.0--from block two through block eight. Also, six Type 1 sub-

jects showed a decrease in performance on "Trained" stimuli relative to "Block 8" although they attained

perfect performance no later than block five. This behavior suggests that some subjects may have been con-

fused about what to do during the transfer task. (Recall that subjects were given no practice transfer trials,

nor were they told ahead of time that a transfer task would be performed.) This confusion may have been

compounded by interference between trained and extrapolated stimuli. When the transfer task data for

these "outlier" human subjects are removed 5 the model's predictions of "Trained" performance are a better

match to the human data, particularly for Types 3 and 6. This is illustrated in Figure 25.

4 A single-feature rule specifies only one feature while an exception rule specifies two features, yielding a combined
"degree of specificity" of three.
F For this analysis, we remove subjects whose performance in bloclc eight was better than chance-p(e) < 0.3-but
whose performance on 'Trained" stimuli was equal to or worse than chance-P(e) >= 0.5. One subject was removed
for 1ype 1; five subjects were removed for both Types 3 and 6.
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Figure 25: Revised fit after removal of outlier humans data (G 2=14.94).

9.0 DISCUSSION

"Every model is wrong, but some models are usefll" is a epigram attributed to George E.P Box. Having

presented the models and some initial discussion of their fits to human data, this section examines the

limitations of the models more critically, and also attempts to show, that although the models had

limitations, they provided insights into human performance that made them quite useful.

9.1 Critical Analysis of SCA

The original SCA model, representing a single strategy and subject, provided learning within the brackets

of the fastest and slowest human learners and matched the learning of some individual subjects

qualitatively and quantitatively. The SCA Soar model provided these fits apriori. We achieved these results

by reusing an extant model, following constraints imposed by theory, and without introducing additional

knowledge or parameters. This methodology provides for the cumulation of results necessary for a

comprehensive architectural theory (Newell, 1990).

We achieved improved aggregate fits by developing a population of models with different strategies

(reflected in the different methods for determining abstraction order) and different feature vectors. These

choices were motivated from a more fine-grained analysis of the individual data. This approach begins to

approximate the demand for more sophisticated models of human learning that match not only the aggre-

gate data but also match the learning trajectories of individual subjects and successfully predict perfor-

mance on transfer stimuli (Estes 2002). The number of direct correspondences between human individuals

and individual model runs does improve over the original SCA model.

One positive consequence of taking seriously the constraints of theory, architecture and a previously-

existing model is that this constraint led us to consider different strategies and alternate feature encodings.

While we would much prefer to be able to make a priori predictions of the features based on the represen-

tation, post hoc estimation of the feature space is consistent with the decisions of other modelers. For

example, in an icon search task model, Fleetwood & Byrne (2002) indicate that the features for their task,

wlhidi ixidudc vcLy simplk ohaprs as wcll as morc complcx icons, wcrc catimatcd from human data. Cur-

rently, models of perception such as EPIC and ACT-RIPM do not inform or constrain the number of fea-
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tures needed for any particular percept (in part because such results are not available in the human factors

or cognitive science literature). Thus, while our approach did require post hoc analysis to match the data, it

also led us to ask other questions that modelers using other architectures were not led to ask. In general,

this is one of the advantages of alternate theories and computational architectures: different theories and

architectures lead to different ways of interpreting and analyzing a data set, thus offering, in sum, a greater

perspective on the human phenomena than any individual perspective.

While the aggregate and individual model fits were good, issues and questions related to the plausibility

and completeness of SCA as a descriptive model of category learning were not resolved. If the debrief

results can be assumed to be reasonable indicators of a person's self-awareness of cognition, it appears that

human subjects learned using both exemplar- like techniques (Subject 2: "I started to notice a pattern") and

hypothesis testing techniques that led to rules (Subject 18: "Accept if the plane's fuel was at 20, reject at

40"). SCA models only the former. A potential line of future research would be to combine the hypothesis-

testing component of the RULEX-EM model with SCA and compare the results to other hybrid models.

SCA's abstraction process is deliberate, which makes the use of additional, irrelevant features more prob-

lematic for a descriptive model. Even if irrelevant features were perceived, SCA, as currently conceived,

would ignore them due to their irrelevance (as defined by the task instructions). While the immediate goal

was to model this task within the existing model of SCA, we have begun to investigate an alternative for-

mulation of SCA that will use episodic indexing (Altmann and John 1999). In this model, feature abstrac-

tion occurs as a consequence of attention and recall, rather than via a deliberate abstraction process.

Preliminary results suggest this model will provide similar learning results but avoid the use of a deliberate

abstraction procedure, a psychologically unrealistic component of SCA.

The current model also ignores that any extra features considered in early blocks would be decreasingly

likely to play a factor in later blocks. Although human subjects did report being influenced by external fac-

tors, most acknowledged or implied that they abandoned or excluded these factors as experience with the

task deepened. In the attention-based SCA model, an obvious way to model the decreasing influence of

extra features would be to learn to attend only to the features that led to positive feedback- Initially, this

learning would introduce new features into consideration (because, by random chance, some of them

would be useful for a few trials), but, over time, would allow the model to converge on just those features

that are needed for categorization. Such a model will be a step towards a descriptive model that accounts

for the consideration of extra features in human learning. However, such a model still would not address

other factors like feature value discrimination and semantic interpretation of the features and values.

Hypothese. other than extra features will also be useful for developing deep explanations of human

learning in this task. For example, in Round 1, we evaluated how learning slowed in SCA if the model did
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not learn on every trial (SCA learns a new prediction rule with every learning trial). Introducing a proba-

bility of learning parameter did allow SCA to better match the aggregate learning curves. The primary res-

ervation with this approach is that we did not find any direct evidence in the data that would explain why

the model should not learn on every trial. Subjects did report that they grew bored during the experiment

and for a period responded randomly or with the same response. These responses provide a clue as to how

to slow learning, but again, the challenge is to capture and to encode the conditions under which such fac-

tors should be considered, requiring models of motivation and interest.

9.2 Critical Analysis of RULEX-EM

The development of RULEX-EM relied on synthesis and integration on several dimensions. First, the

model is constructed within the constraints of an integrated cognitive architecture. Second, the model

contains both exemplar and rule representations. Third, the learning model is integrated with a pre-

existing model of a dynamic perceptual-motor performance task.

RULEX-EM, evaluated in the context of the AMBR learning and performance task, produced very

good fits and many predictions confirmed by human data. We attribute the model's success, in part, to a)

the architectural integration of elements of ACT-R, Soar, and EPIC, b) inheriting the validation of these

systems, and c) accepting the modeling constraints of these mechanisms. Notwithstanding these positive

results, there remain many unresolved limitations and methodological issues.

One such issue concerns the uniform representation of rules and exemplars as declarative four-tuples.

This representation was similar to that used by Nosofsky, Palmeri & McKinley (1994) and was sufficient

for modeling the AMBR learning task. However, we are not asserting that this representation is used by

humans. A review of the empirical literature will help to inform the proper representations for rules and

exemplars.

Another issue concerns the strict specific-to-general approach to category prediction. It is unlikely that

humans use such a strict process to determine an instance's category. A consequence of the model always

considering exception rules before single-feature rules is seen in Figure 18 by the very high use (30%) of

exception rules in Type 1 problems, where one might expect near exclusive use of single-feature rules. We

are considering an alternative prediction process; one that is based on competition between prediction

strategies (exemplar recall, exception rules, single-feature rules). A competitive prediction approach-

selecting a prediction strategy based on their utility (activation) and tending to favor new rules or rules suc-

cessfully used in the previous trial-may produce a more believable strategy distribution. Such an approach

would require a control scheme that deliberately chose not to use a recalled rule that had just failed. This

would allow the model to better explore the space of hypotheses, while not preventing the reuse of previ-

ously failed rules.
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A weakness of the model is the episodic recall strategy, if it succeeds, will always return the correct cate-

gory. This occurs, in part, because exemplar memories are a four-tuple, tightly coupling the instance fea-

tures with the category. A more ecologically correct representation should perhaps group instance features

in a three-tuple, create a distinct memory structure for the category (because the feedback is temporally

displaced from the onset of the instance features), then use an associating memory structure to bind the

instance to the category. This dissociation of stimuli feature and category allows the model to recall or rec-

ognize a stimulus, while not ensuring the availability of the category because the associating memory struc-

ture may become unavailable due to inadequate use. While this solution provides a more distributed

representation, it only addresses failure to recall a category. Another issue entirely ignored by the present

architecture and model is successful, but confused recall or recognition due to the interference between

similar stimuli and category classes. This is an important avenue for future architectural explorations.

The individual model data (Figure 17) is almost uniformly distributed around the mean model data.

This occurs because the model's primary source of variability is noise. This reliance on noise is responsible

for the unexpected reduction in variability as problem difficulty increased. Wray & Laird (2003) caution

against attempts to represent the range of human behavior by noise alone. Rather there must also be repre-

sentations of the variety of strategies humans perform. RULEX-EM only implements a normative strategy

and it does not include specific prediction or learning strategies, such as used by a subject who may a)

choose to give the same prediction until they have observed a pattern or b) makes an apriori decision to

memorize the exemplars; e.g. one subject reported an apriori decision to memorize instances. It also does

not include the behavior of subjects who did not conform to task instructions and considered non-relevant

task features when formulating their categories (as exemplified in Table 1) or who perhaps did not under-

stand the goal of the task (e.g., as discussed in Section 8.2.)

RULEX-EM is principally a learn-on-failure model. Only exemplar learning and reinforcement, though

the creation and rehearsal of exemplars, will occur until a prediction (using the "guess" prediction strategy)

fails. This learning approach has implications for modeling human data, most notably for Type 1 prob-

lems. The individual human data graphs in Figure 17 show that at least one human subject produced per-

fect prediction (P(e) = 0) in Block 1. In fact, this subject made only one error (in block 8) for their entire

training. RULEX-EM cannot reproduce this behavior and offers the implausible explanation that this sub-

ject guessed correctly over seven blocks. In contrast, SCA, which learns on every instance presentation, is

able to produce perfect prediction in Block 1 for Type 1, as illustrated in Figure 10. It may be possible for

RULEX-EM to also produce this behavior with the addition of explicit cognitive strategies such as those

mentioned above for increasing the variability of the model.
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RULEX-EM required tuning of only two free parameters: the number of rehearsals for rules and exem-

plars. These two stand in contrast to the ten free parameters available in RULEX. However, before this

reduction can be considered an achievement, RULEX-EM must demonstrate coverage of the breadth of

data previously fit by RULEX. Additionally, the explicit rehearsals controlled by those two free parameters

are an example of the "placeholder" nature of free parameters. We do not believe that subjects are deliber-

ately and consistently rehearsing rules seven times and exemplars four times. Instead, it is more likely that

subjects are performing productive processing of rules and exemplars that has an effect approximated by

explicit rehearsals. As we refine the model, we hope to identify parameter-free processes that eliminate the

need for explicit rehearsals.

10.0 CONCLUSIONS

Modeling, in all its forms, is a technique by which we operationalize, test, and expand our understanding

of phenomena or behavior. Model development has a large number of degrees of freedom. Constraints on

the process reduce the space of model development options, resulting in more principled models. One of

the themes of this report has been the essential role that constraints played in the development of our

models.

The methodology and principles Newell (1990) outlined for unified theories of cognition strongly con-

strained our modeling decision. The EASE architecture, developed in the course of the AMBR project,

came about as a result of "listening to the architecture" and identifying areas where the set of mechanisms

of the original architecture (Soar) needed to be amended. Also, we have reused the SCA model, developed

in previous work on category learning. Although the initial fit of the SCA model to the mean human data

was poor, the constraint of "listening to the architecture" and seeking solutions within it, led to further,

deeper analysis of the human data. By minimizing changes to both the architecture and model, we devel-

oped the hypothesis that other factors were playing a role in the task (such as additional features and

semantic interpretation of the features). This hypothesis was confirmed in the more fine-grained data

analysis. The normative effects of these features were then incorporated into the existing model with little

change to the model itself. By following the task and methodological constraints, we preserved the previ-

ous validation of SCA and gained a deeper understanding of influences on learning for the AMBR task.

The mechanisms of an architecture also provide strong constraints on the formulation of the model. For

example, the visual perception system of EASE (inherited from EPIC) represents retinal zones and the

varying availability of perceptual features and objects depending on which zone the object is located. This

-nnftrn•nt requiored dint the mndel inrluncle a sarrade generation component- EASE also includes the hase-

level learning memory mechanism from ACT-R. When this mechanism was first added to the model, it
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immediately required the addition of knowledge for coping with forgotten items. Both of these mecha-

nisms required a more detailed representation of the task. However, the consequence is a deeper under-

standing of the behavior and the emergence of unanticipated effects; e.g. performance errors.

Another source of constraint present in this work the adoption of pre-existing mechanisms that have

been validated in other architectures and models. EASE contains the sensory; perceptual, and motor

mechanisms of EPIC, and the ACT-R base-level learning memory mechanism. In both cases, the estab-

lished free parameters values were also adopted and were not tuned to fit human data. By adopting mecha-

nisms from other architectures, EASE inherits the validation of these mechanisms. Additionally, the

history of findings that validate those mechanisms and particularly the established free parameter setting

acts as a strong constraint against tuning the parameters to provide better fits.

Thus far we have only addressed the architectural constraints. However, the architecture only captures

the invariant aspects of the human organism-the mechanisms, structures, and processes that are brought

to bear in facilitating all behaviors. The architecture does not produce behavior. Rather, it is knowledge that

determines what and how behaviors are generated (Newell, 1990). Differences in knowledge and how that

knowledge is applied produces a wide range of learning and performance in human behavior.

For many tasks, the greatest constraint arises from the explicit and implicit knowledge available in the

task environment and task instructions. Encoding instructions and dependencies identified from a func-

tional analysis can define much of the process necessary to perform the task. This is often true of interac-

tive tasks or sub-tasks that have a minimal cognitive component, such as the immediate behavior tasks

commonly used in psychological experiments. The model of the ATC task (Experiment 1) is an example of

such a task. The explicit knowledge was encoded to produce the interactive behavior and implicit knowl-

edge in the penalty scores informed how the model would resolve multi-task demands.

However, even in Experiment 1, covert cognitive behavior appeared to be critical to performance; e.g.

the choice of a blip on which to fixate. Covert cognitive processes are also central to the learning task of

Experiment 2. Tasks or sub-tasks with such significant cognitive components can seldom benefit from

constraints as strong as those available for interactive tasks or sub-tasks. While a model can derive weak

constraints from task analyses or related research, it is the combination of these weak constraints with those

provided by the architecture that can result in more principled models. As architecture-based theories

evolve, they will impose increasingly stronger constraints on models of cognitive behavior.

Although we were subject to many sources of constraint on the model building process, many degrees of

freedom remain. This is evident by the two different models of category learning that comparably fit and

predict the data. The differences representing alternate learning strategies; strategies that humans may also

use. These strategies emerged from our investigation of contrasting hypotheses of the factors that influence
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category learning. The SCA model investigated the effect of considering extraneous information during

learning, while RULEX-EM investigated the interaction of memory effects and prediction strategy on

learning. In the final analysis, both models have contributions to make to one another, with the end result

being a fuller understanding of category learning.
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